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Abstract

Container Runtime Systems (CRSs), which form the foundational

infrastructure of container clouds, are critically important due to

their impact on the quality of container cloud implementations.

However, a comprehensive understanding of the quality issues

present in CRS implementations remains lacking. To bridge this

gap, we conduct the �rst comprehensive empirical study of CRS

bugs. Speci�cally, we gather 429 bugs from 8,271 commits across

dominant CRS projects, including runc, gvisor, containerd, and

cri-o. Through manual analysis, we develop taxonomies of CRS

bug symptoms and root causes, comprising 16 and 13 categories,

respectively. Furthermore, we evaluate the capability of popular

testing approaches, including unit testing, integration testing, and

fuzz testing in detecting these bugs. The results show that 78.79% of

the bugs cannot be detected due to the lack of test drivers, oracles,

and e�ective test cases. Based on the �ndings of our study, we

present implications and future research directions for various

stakeholders in the domain of CRSs. We hope that our work can

lay the groundwork for future research on CRS bug detection.

CCS Concepts

• Software and its engineering→ Software veri�cation and

validation; Software testing and debugging; • Computer sys-

tems organization → Cloud computing.
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1 Introduction

Containers provide a highly �exible and portable solution for man-

aging and deploying application work�ows in the cloud. According

to the Cloud Native Computing Foundation (CNCF) Annual Survey

2023 [5], containerization has become the predominant standard,

with over 66% of organizations adopt cloud native technologies in

production. It highlights the bene�t of widespread containerization

and the ongoing shift towards a container-centric approach in cloud

computing. As a result, ensuring the quality, reliability and security

of container infrastructure is paramount.

As depicted in Fig.1a, the container cloud architecture comprises

three layers: orchestration, container, and kernel layers. The orches-

tration layer includes container cluster management platforms like

Kubernetes [30], which automates and scales containers. The kernel

layer provides basic isolation features for containers. The container

layer, positioned as the middle layer, is composed of Container

Runtime Systems (CRSs) that serve two primary functions: inter-

preting container orchestration commands complying with Con-

tainer Runtime Interface (CRI) protocol [31] (e.g., containerd and

cri-o) and operating containers within the Open Container Initia-

tive (OCI) [47] (e.g., runc, gvisor). CRSs work as the foundational

infrastructure of container clouds by enabling the deployment and

management of containers. Therefore, it is important to ensure the

reliability and security of runtime systems.

Motivation. Given the unique features of CRSs, such as multi-

tenant application scenarios, complex con�gurations and elevated

privileges for system-level communication, the bug patterns in

CRSs can manifest in di�erent ways, leading to characterized issues

with reliability and security. As the foundational infrastructure

in container services, faults in CRSs often necessitate immediate

remedial actions for dependent cloud services, such as Docker [22]

and Kubernetes [30]. For instance, the container vulnerabilities

CVE-2019-5736 [17] and CVE-2024-21626 [21] can result in priv-

ilege escalation and container escape due to mishandling of pro-

cess and �le descriptor isolation in CRS. The root causes of these

vulnerabilities are related to the unique lifecycle management of

CRS. Moreover, considering the frequent updates and high security

demands of CRSs, the rapid code changes can also introduce regres-

sion vulnerabilities, e.g., CVE-2023-27561 [20]. It is necessary to

understand the characteristics of CRS and its corresponding issues.

While many studies have explored bugs in various software sys-

tems [4, 50, 51, 58], including container security [1, 35, 63] and

performance issues [23], there is currently no comprehensive study
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Figure 1: Overview of Container Cloud and CRSs

that delves into the characteristics of various bugs in CRSs. Speci�-

cally, there is a lack of understanding regarding the types of bugs

in CRSs, as well as their symptoms, root causes, and the challenges

involved in detecting them.

To �ll this gap, we present the �rst study targeting understanding

the bugs present in CRSs, aiming to answer three key research

questions: RQ1:What are the common symptoms of bugs occurred

in CRSs? RQ2:What are the prevalent root causes of these bugs?

RQ3: How e�ective are existing methods in detecting di�erent

types of bugs in CRSs, and what are the main challenges?

Contributions. To answer these research questions, we select

two representative projects from each of the two container layers,

speci�cally runc and gvisor from the OCI layer, and containerd

and cri-o from the CRI layer. The CRSs we selected are widely used

in the production environment, serving billions of users. Among

them, runc and containerd are the default runtimes for Docker

and Kubernetes. gvisor is sandbox [65] runtime implementation

developed by Google, which is used as the default runtime for the

�rst generation execution environment of Google Cloud [25]. cri-o

is speci�cally designed as the high-level runtime for Kubernetes.

It is highly compatible with the CRI protocol and supports hybrid

security-level OCI runtime workloads.

We collect commits from the four projects and extract bug-

related commits. After �ltering out irrelevant commits, we obtain a

dataset of 429 commits containing bugs and corresponding �xes in

total from the above four projects. We manually analyze each bug

and its repair to gain a quantitative understanding of these bugs and

summarize the symptoms (RQ1) and root causes (RQ2). Speci�cally,

we summarize a total of 16 types of symptoms and 13 types of root

causes. We further perform in-depth analysis to understand the

unique features of CRS bugs, the di�erences compared to other

software and the relationship between symptoms and root causes.

We further investigate the challenges involved in detecting these

bugs by studying the three most widely used testing methods: unit

testing, integration testing, and fuzz testing. We collect existing

tests, analyze whether the collected bugs can be covered and iden-

tify the reasons behind these outcomes to address RQ3. Our results

indicate that only approximately 20% of the gathered bugs can be

automatically detected with existing testing approaches. This is

largely attributable to the absence of test oracles 9.32%, test drivers

41.96%, or test cases 27.97%. By addressing these research questions,

this study provides a comprehensive understanding of container

bugs, which serve as a foundation for future work in enhancing the

quality of CRSs.

In summary, this paper makes the following contributions:

• We conduct the �rst empirical study to systematically explore the

characteristics of bugs in Container Runtime Systems (CRSs). We

provide taxonomies for bug symptoms and root causes, o�ering

insights into understanding CRS bug characteristics.

• We conduct the study on the e�ectiveness of existing testing

methods in detecting di�erent types of bugs in CRSs.

• We o�er �ndings based on the developed taxonomies and provide

recommendations for di�erent stakeholders.

• We collect a dataset of bugs from CRSs, which can serve as a

valuable benchmark for further research and testing of CRSs.

2 Background

As illustrated in Fig. 1, container cloud systems can be categorized

into three layers: orchestration layer, container layer, and kernel

layer. The orchestration layer handles the management of con-

tainers and resources, while the container layer is responsible for

container images and container isolation. The container layer con-

tains two sub-layers: the high-level container layer which complies

with Container Runtime Interface (CRI) protocol, and the Open

Container Initiative (OCI) regulated lower-level container layer.

The kernel layer receives commands from the container layer and

provides container isolation and resource limitations.

Container Runtime Initiative (CRI). containerd [7] and cri-

o [15] are the top two recommended CRI runtime implementations

by Kubernetes, which function as a tool for managing the lifecycle

of lower-level container runtimes. The main tasks of the CRI layer

include providing the OCI runtime with a prepared and con�gured

image packages, managing image versions and snapshots, and han-

dling networking con�guration for the container, which is done

through the gRPC service to receive commands. The CRI runtime

is designed to be loosely coupled, depending on a variety of plugins

for its functionality. These include built-in plugins such as snap-

shots and contents, as well as external plugins like hcsshim [39] or

user-customized plugins. The uni�ed container initiative protocol

allows a CRI runtime to manage multiple life cycles of OCI runtimes

with di�erent implementations.

Open Container Initiative (OCI). OCI runtimes act as vital com-

ponents for container services. The primary function of OCI run-

times is to parse the input con�guration and communicate with the

kernel to customize isolation and resource usage. The OCI runtime

initiator will prepare all the processes required to start a container,

after which the functions of the OCI runtime will be controlled by

the runtime engine. For instance, runc [48], the de facto default OCI

runtime for CRI runtimes, which transfer the received commands

into the API of libcontainer for managing cgroup, namespace,
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seccomp and etc. gvisor is a popular sandbox [65] OCI runtime,

which interacts with the host system based on runsc and sentry.

3 Methodology

To comprehend the CRS bugs, we �rst gather the commits of runc,

gvisor, cri-o and containerd, and then �lter the results with

keywords to identify bug-repairing commits, which are kept as

candidate bugs. The collected commits are then used to study the

�rst two research questions. Speci�cally, we manually read, triage,

and label the bug-repairing commits, and then develop the taxon-

omy of both symptoms and root causes for each bug. To answer

RQ3, we collect existing tests and subsequently execute them on

corresponding software versions. We manually analyze the testing

results and identify the speci�c reasons.

3.1 Data Collection

3.1.1 Bug Collection. Following previous works [51, 53, 54], we

collect and analyze bug-repairing commits from four of the most

widely-used CRS projects for bug analysis. Speci�cally, we select

runc and gvisor for the respective OCI runtime layer. For the

CRI runtime layer, we choose containerd and cri-o. These sys-

tems are all implemented in the Go programming language and are

pre-con�gured as the default runtime combination in mainstream

container orchestration systems such as Kubernetes and Docker/-

Moby. We also attempt to include GitHub issues in our dataset. We

�nd that all the bug-related issues are already linked to our selected

bug commits, since the resolved issues are typically accompanied

by �x commits. However, bug related commits may not always

involve an issue (e.g., bugs �xed by developers independently).

We collect and analyze the commits over a two-year period,

starting from June 1st, 2021. In total, we collect 1,081, 2,305, 2,981,

and 1,904 commits from runc, gvisor, containerd and cri-o,

respectively. Among all the commits we collected, bug-repairing

commits are what we need for further analysis. Therefore, we fol-

low the previous works [33, 51] by selecting suitable keywords for

�ltering the bug related commits. Speci�cally, we �lter the com-

mits messages using keywords including fix, error, bug, mistake,

incorrect, flaw, fault, issue, performance, security, cve and

vulnerability. Then we remove the duplicated commits, such as

those with keywords like merge or pr. We are left with a total of

253, 458, 356 and 215 commits for the four projects, respectively.

For each commit, we conduct a thorough manual review of the

developer’s comments within the source code, the commit mes-

sages, and the discussions associated with attached issues and pull

requests. After our manual con�rmation and �ltering process, we

retain commits explicitly related to bug-repairing activities, total-

ing 99, 115, 152, and 63 bug-repairing commits, respectively. We

then summarize the symptoms and root causes of CRS bugs from

these 429 commits. During the analysis, we also check whether the

commits are for patching security vulnerabilities by matching the

commit with records from MITRE CVE Database [14] and Github

Security Advisory of each project. In total, we assemble 19 unique

security vulnerabilities, which are listed on our website [28].

3.1.2 Test Collection. To understand the challenges associatedwith

detecting the collected bugs in CRSs, we examine the existing test-

ing suites within CRS projects. We focus on three popular testing

methods: unit testing, integration testing, and fuzz testing, which

are commonly integrated in the selected projects (e.g., within the

tests directory). Our main objective is to evaluate the e�ectiveness

of these tests in detecting the collected bugs and gain insights into

why certain bugs fail to be detected.

• Unit test. Since all four selected projects are primarily imple-

mented in the Go programming language, the unit test adheres

to the native Go test paradigm. Test �les end with “test”, function

names begin with “Test”, and the testing log is pre�xed with

“RUN”. Based on these patterns, we track each unit test drivers

following testing �ags from the Makefile and source code. Even-

tually, we collect 314, 449, 734 and 62 unit tests for runc (release

1.1.4), gvisor (release 20230710.0), containerd (release 1.6.15)

and cri-o (release 1.27.0).

• Integration test. Unlike unit tests, which focus on testing indi-

vidual component or function, integration tests in CRS usually

verify the assembled functionalities such as container create

or delete. We examine the test build script of CRS projects and

�lter related �ags such as integration. We also gather all the

Go tests that are called during the integration testing. In total, we

collect 170, 22, 190, and 309 integration tests for runc, gvisor,

containerd and cri-o, respectively.

• Fuzz testing. The fuzz testing includes test cases written by OSS-

Fuzz [3] and CNCF Fuzz [6], which are used to test key functions

of CRS project. We follow the build scripts of CRS projects for

these two fuzzing platforms and collect 11, 1, 28, 17 fuzz tests for

runc, gvisor, containerd and cri-o, respectively.

After collecting the tests, we execute them to determine whether

the corresponding bugs could be detected. Subsequently, we con-

duct a manual analysis of the dynamic execution information and

summarize the challenges associated with detecting bugs from dif-

ferent categories.

3.2 Manual Analysis

To create a taxonomy for symptoms and root causes in CRS bugs,

we follow the prior work with an open coding procedure [51–53]

and split the commits into two halves for analysis. In the �rst round

of analysis, two authors independently analyze the informative

messages, bug behavior, modi�ed �les and testing results of each

commit, and group them according to their symptoms or root causes.

If a commit had unique symptoms or root causes, a new category

will be created. As the taxonomies are re�ned during the manual

analysis, the two authors discuss and clarify any di�erences in

their categories. For any dispute, an arbitrator will be introduced

to jointly discuss the resolution of the taxonomy result until they

can reach the consensus. If they cannot reach consensus, the bug

is classi�ed as “Others”. The second round repeats the procedure

with the remaining 50% of the commits, and the rate of arbitration

falls from 50% to 12%. In the third round, the authors sample 20% of

the commits in each project �ve times and examine the proposed

taxonomy. The controversial commits are discussed by all authors

and lead to a reevaluation of the related categories.

The �nal version of the taxonomies are reviewed and con�rmed

by all the authors. For the security vulnerabilities of CRSs, the

corresponding �x commits are picked with the keywords (e.g., CVE)

or the assigned GitHub security advisory ID (e.g., GHSA). We jointly

analyze and con�rm the commits that are indeed the �x commits for
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the security vulnerabilities. We evaluate the inter-rater reliability

of labeling in each round with Cohen’s Kappa (k) coe�cient. In the

initial round, the inter-rater reliability k is 0.55, which improves to

0.67 in the second round. After detailed analysis in the third round,

the k value increases to 0.83, signifying good agreement [32].

4 RQ1: Symptom Taxonomy

Fig. 2 presents the hierarchical taxonomy of symptoms of container

bugs in CRSs, organized into 4 major categories: Build Failure, Unex-

pected Termination, Unexpected Functionality and Poor Performance.

Each high-level category is further subdivided into subcategories

based on the bug characteristics.

To highlight the security vulnerabilities in CRSs, we label part

of subcategories, i.e., leaf nodes in the taxonomy tree using red

color. To distinguish the severity of each category, we adapt four

color intensities based on the average CVSS score of the bugs. Our

analysis reveals that over half of the existing CRS vulnerabilities (11

out of 19) exhibit the symptom of Escalated Privilege, underscoring

the severity of this bug category.

Finding 1: We identify a total of 16 distinct leaf categories

of bug symptoms. Among these categories, 5 (31.25%) exhibit

the association with the security vulnerabilities of CRSs.

4.1 Build Failure (A)

The CRSs require compilation before providing the service, with

various con�gurations on di�erent supporting architectures. We

�nd that 7.69% of the bugs occur during the building phase, falling

under the category of Build Failure. The build failure mainly mani-

fests as the dependencies errors, which occur when there are issues

with the dependencies required to build CRSs.

Dependency errors can occur at package level and API level. De-

pendency errors at the package level can arise when there are

frequent updates to upstream dependencies, leading to incompati-

bility issues during the building process. Dependency errors at the

API level occur due to the need for distinct implementations and

con�gurations to support various computing architectures and OS

distributions, given that OCI and CRI software is designed to be

platform-agnostic. As a result, the building process may encounter

platform-speci�c unsupported API errors, leading to build failures.

Finding 2: A total of 7.69% of the bugs fall under the cate-

gory of Build Failure, which is mainly attributed to the inher-

ent requirement for CRSs to be platform-agnostic, leading to

cross-platform compatibility issues such as package or API

dependency errors.

4.2 Unexpected Termination (B)

A signi�cant portion of bugs (20.98%) are related to unexpected

terminations during the running of CRSs, including two main sub-

categories: Unexpected Crash and Incorrect Exit Code.

4.2.1 Unexpected Crash (B.1). The majority of Unexpected Ter-

mination bugs (88.89%) fall into the Unexpected Crash category.

Although crashes are a common symptom, they occur in a variety

of container-speci�c situations such as Plugin Management Error

(B.1.1), Runtime Daemon Crash (B.1.2), and System Communication

Error (B.1.3). Notably, 25.00% of crashes occur during the manage-

ment of plugins. CRSs, especially CRI runtimes, use many plugins to

facilitate functionality and reduce coupling. However, the improper

usage of plugins may lead to unexpected crashes. For instance,

containerd crashes during the management of snapshot plugin,

which is caused by the incorrect calling for Commit method [10].

There are 53.75% of crashes that directly break down the runtime

daemon. For example, if runc starts the systemd in a container

without setting speci�c system con�guration (e.g., deviceAllowList),

it will return a fatal error in accessing devnull location and lead

to the crash of runtime daemon [45]. As CRSs usually manage

container services with a resident daemon, the crash of the daemon

could have severe consequences to the service of CRSs.

The remaining 21.25% of the crashes happen when CRSs com-

municate with the system-related API calls (e.g., using system API

to request cgroups, namespaces, and networking resources from the

host machine). It is a unique feature of CRSs, as common application

software rarely handles these system-related resources.

4.2.2 Preset Exit Code (B.2). 11.11% of the bugs that caused unex-

pected termination are classi�ed under the Preset Exit Code category.

These bugs do not cause a CRS crash but instead terminate them

with a predetermined exit code due to some errors. These exit codes

represent abnormal termination status. An example is when using

the shim.Delete command in containerd’s shim, which always

returns a 137 exit code when cleaning up temporary resources (i.e.,

the task has been killed) [11].

Finding 3: 20.98% of the collected bugs manifest as Unex-

pected Termination. These symptoms are highly related to the

features of CRSs work�ow from managing runtime daemon,

managing di�erent plugins to communicating with the host

using system calls.

4.3 Unexpected Functionality (C)

The prevalent error Unexpected Functionality constitutes 59.44%

of the analyzed bugs. These bugs can be further categorized into:

Incorrect Execution Output, Authorization Error, and Logging Error.

Those bugs are closely related to the core functionalities of CRSs.

4.3.1 Logging Error (C.1). Logging Error accounts for 10.98% of

the unexpected functionality bugs. As a core function in cloud

systems, logging is crucial for cloud service maintenance and error

diagnosis. Logging errors represent situations where logging is

not implemented correctly, such as providing inaccurate logging

information or creating over�lled log �les. For example, over�lled

log �les can pose challenges in analysis and consume signi�cant

system storage space.

4.3.2 Incorrect Execution Output (C.2). The most prevalent cate-

gory of unexpected functionality bugs in CRSs is Incorrect Execution

Output, accounting for 70.59% of all bugs. This category refers to

situations where the function output assigned to the runtime’s

internal variables leads to incorrect computational results, either

due to incorrect or improperly formatted output. In addition to the

common symptom of Incorrect Return Value (C.2.1), there are two

symptoms that are more related to CRSs:Wrong Container Behavior

and Incorrect Con�guration E�ect (C.2.3).
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Figure 2: Symptoms of CRS Bugs
* The numbers on the rectangles are the number of bugs, while the red colored categories are security vulnerability related symptoms.

Wrong Container Behavior (C.2.2), which accounts for 34.44% of

the incorrect execution output bugs, refers to the container operat-

ing with incorrect or unexpected behaviors from user commands.

Incorrect Con�guration E�ect, accounting for 22.78% of the in-

correct output issues, occurs when the preset con�guration does

not work as expected, leading to incorrect computational results.

For example, the con�guration (ENOSYS) for runc does not work

correctly on the s390x platform due to di�erent syscall support

policies for the kernel. There is also a category of Other (C.2.4) bugs,

which account for 8.89% of the total, that rarely occur and have

no identi�able characteristics, such as wrong output for exception

warnings and misleading command line hints.

4.3.3 Authorization Error (C.3). Authorization is another critical

feature in CRSs, granting them speci�c operating system privileges

for speci�c usage within container instances. Authorization Error

refers to bugs that cause improper authorization [56] and accounts

for 18.43% of unexpected functionality bugs.

We identify two main symptoms for authorization errors: Access

Permission Denied (C.3.1) and Escalated Privilege (C.3.2), accounting

for approximately half of the authorization errors, respectively. Ac-

cess permission denied bugs typically occur when users are blocked

from accessing speci�c container resources, while they should have

permission to access the location or �le. For instance, runc may

falsely block the mounting point of procsyskernelns_last_pid, re-

sulting in no write permission for a process. Conversely, Escalated

Privilege bugs allow users to have access to container resources

they are not supposed to have access to. These bugs can have se-

vere consequences, ranging from container permission escalation

to sandbox breakout of the preset isolation environment, re�ecting

the majority amount (59.57%) of security vulnerabilities.

Finding 4: The most common category of bugs in CRSs

(59.44%) is Unexpected Functionality, with Incorrect Execution

Output being the most prevalent subcategory (70.59%). From

a security perspective, the most critical symptom is Escalated

Privilege, often resulting from authorization errors. This symp-

tom is closely related to the inherent characteristics of CRSs.

4.4 Poor Performance (D)

Poor Performance, which represents 11.89% of the total bugs, en-

compasses performance issues related to storage, memory, and exe-

cution time. This category includes High Disk Resource Occupancy,

Excessive Execution Time, and Memory Error, which account for

15.69%, 33.33%, and 50.98% of Poor Performance bugs, respectively.

4.4.1 High Disk Resource Occupancy (D.1). High Disk Resource Oc-

cupancy often manifests as excessive disk usage and slow input/out-

put (I/O) pipeline processing. Improper allocation of storage re-

sources not only leads to I/O pipeline resource bottlenecks, but can

also cause the over-consumption of the host storage that impacts on

other containers. A typical example is the incorrect implementation

of slice copy with append in containerd [12], which results in the

storage space being used up more quickly than anticipated.

4.4.2 Excessive Execution Time (D.2). Excessive Execution Time can

slow down the runtime signi�cantly, potentially leading to non-

termination. For instance, a bug was discovered in runc [49], where

the incorrect execution results in a much longer execution time.

4.4.3 Memory Error (D.3). Memory Error bugs are mainly caused

by Out of Memory (D.3.1) and Host Memory Leak (D.3.2). For Out of

Memory, the amount of memory allocated for a container is deter-

mined by the memcfg con�guration. However, the bugs may cause

the container to consumemorememory than intended, even exceed-

ing memory usage limits. This could lead to severe issues, including

malicious memory consumption, which creates vulnerabilities for

denial of service attacks and container escapes [64].

Host Memory Leak refers to the memory boundary leaks of CRSs,

which can have serious consequences. For example, the byte order

representation used in runc [46] di�ers from that expected by

systemd, causing reversed cpuset ranges to be set in systemd

transient unit [36].

Finding 5: Bugs with Poor Performance symptom account for

11.89% of all bugs and can manifest as the abnormal behav-

iors. These bugs are primarily attributed to the complexities

involved in managing memory and storage within container-

ized environments.

5 RQ2: Root Cause Taxonomy

We further conduct an analysis of the root causes of the bugs col-

lected in CRSs. The taxonomy of root causes is presented in Fig. 3,

which includes categories of Coding Error, Con�guration Error, and

Others. There are a total of 13 leaf categories, including others that

do not �t logically into the other categories.

Similarly, the categories in red represent the security vulnera-

bilities �agged bug root causes, i.e., they have caused real world

security consequences. These categories can be ranked into four

groups based on their prevalence and colored with di�erent inten-

sities to represent their severity.
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Figure 3: Root Causes of CRS Bugs.
* The numbers on the rectangles are the number of bugs, while the red colored categories are security vulnerability related root causes.

5.1 Coding Error (A)

The most prevalent root cause for CRS bugs is coding errors, ac-

counting for 65.50% of all bugs, including Improper Exception Han-

dling, Incorrect 3rd Party Library Usage as well as security vulnera-

bility �agged root causes like Insecure Runtime Implementation and

Incorrect Function Implementation (e.g., image parsing).

5.1.1 Improper Exception Handling (A.1). The Improper Exception

Handling category is a root cause of 22.06% of the Coding Error bugs.

When exceptions are not handled properly, the runtime may termi-

nate unexpectedly and error prompts may be missing, resulting in

dysfunctional runtime services and inaccurate error message. For in-

stance, in containerd, the errors in function gorestrl.rdt.Con-

tainerClassFromAnnotations were not properly handled, lead-

ing to ine�ective con�guration parsing and incorrect runtime func-

tionality.

5.1.2 Incorrect 3rd Party Library Usage (A.2). 15.66% of the Cod-

ing Error bugs are caused by the incorrect usage of third-party

libraries. Since CRSs rely on numerous third-party libraries during

the development and runtime phases, it is important to use them

correctly. Improper use includes issues such as unnecessary vari-

able usage, inconsistencies in function implementation with the

initially settled API, and compatibility problems with the runtime

environment. For example, the third-party library libseccomp [44]

changed its method from ActKill to ActKillThread. Calling the

outdated version of the API may lead to unde�ned issues.

5.1.3 Insecure Runtime Implementation (A.3). 17.08% of the Coding

Error bugs are caused by insecure runtime implementation, which

can result in security issues such as incorrect authorization illus-

trated in Section 5. This category can be further divided into Unsafe

API Usage (A.3.1) and Inappropriate Lifecycle Organization (A.3.2).

The improper use of internal or external unsafe APIs can intro-

duce potential exploitable vulnerabilities into CRSs. For instance,

CVE-2021-43816 [19] shows an example where the CRI plugin of

containerdmisused the API of SELinux security module, resulting

in improper �le relabeling of arbitrary �les and directories [9]. It

allows the bind mounts in hostPath volumes, thereby elevating

container permissions.

Inappropriate Lifecycle Organization (A.3.2) refers to container

lifecycle management issues that may cause the miss of permission

checks, leading to issues such as memory leaks, wrong isolation

allowance, and action handling race conditions. For example, a bug

occurs when containerd crashes during the creation of a container,

and the shim process is not properly cleaned up, which may bring

leak of shim process and potential security issues.

5.1.4 Incorrect Function Implementation (A.4). Incorrect Function

Implementation is a general category of errors that greatly a�ects

the functionality of CRSs, and accounts for 45.20% of coding errors.

The majority of the incorrect implementations (70.08%) are caused

byWrong Code Logic (A.4.1). Another category is Incorrect Image and

Con�g Parsing (A.4.2), which accounts for the remaining 29.92% of

incorrect implementation bugs. Due to the nature of cross-platform,

CRSs need to parse di�erent images and have many con�gurations

that vary from memory, storage, to host mounting and networking.

Therefore, incorrectly implemented parsing functions may result

in wrong container behaviors or incorrect CRSs functionality.

Finding 6: Coding Error is the most common root cause of

bugs in CRSs, accounting for 65.50% of all bugs. In addition to

common coding errors such as incorrect API usage and �awed

logic, coding errors in CRSs are often related to the importing

of images and the management of container lifecycles.

5.2 Con�guration Error (B)

In addition to coding errors, con�guration errors are another signif-

icant root cause of bugs in CRSs, accounting for 31.47% of all bugs.

Con�guration errors can impact the performance of the runtime

lifecycle, resulting in errors and a�ecting its overall functionality.

Four sub-categories of con�guration errors include: Improper Au-

thorization Con�guration, 3rd Party Component Con�guration Error,

Build Con�guration Error, and Runtime Shim Con�guration Error.

5.2.1 Improper Authorization Config (B.1). CRSs, especially CRI

runtimes, encounter numerous scenarios in processing authoriza-

tion con�gurations to provide containerization services. Incorrect

setting of such permission related con�gurations for containers can

lead to functional issues and even security vulnerabilities. Specif-

ically, these bugs can be classi�ed into two categories: Incorrect

Mount Options (B.1.1) and Inaccurate Permission Assignment (B.1.2).

CRSs require multiple mount settings for CRSs to normally start

a container. Mount options are critical in starting containers, as

they include mount points, parameters (e.g., auto mount option,

root option, synchronize option) and accessibility. For instance,

the dysfunctional behavior of the pause container [8] is due to the

absence of three speci�c �ags (nosuid, nodev and noexec) at the

/dev/shmmount point. Inaccurate permission assignments can also

lead to signi�cant risks in CRSs, as many of these con�gurations are

pre-loaded and not altered by the users. Therefore, these bugs can
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have a signi�cant impact on the performance and security of CRSs.

For example, the default seccomp con�guration in containerd did

not block socket calls to AF_VSOCK, posing security concerns for

the runtime.

5.2.2 3rd Party Components Configuration Error (B.2). The incor-

rect con�gurations of 3rd Party components are a major root cause

of con�guration errors, accounting for 42.22% of bugs. This cate-

gory mainly concerns errors caused by improper plugin handling

con�gurations and system-related con�gurations. CRI runtimes, in

particular, rely on a large number of plugins to support their func-

tionality, making them more susceptible to con�guration errors in

plugins compared to OCI runtimes (64.29% vs. 48.28%). For exam-

ple, a strict AppArmor con�guration can block reads of containerd

traces, making it di�cult for diagnostic facilities to collect crash

or hang dumps [13]. In contrast, OCI runtimes, which have more

functions for interacting with system-related services, are more

vulnerable to errors in setting system-related con�gurations than

CRI runtimes (51.72% vs. 35.71%). For instance, a miscon�gured

libseccomp con�guration in runc could lead to a process with a

broken argc check [43].

5.2.3 Build Configuration Error (B.3). During the building process

of CRSs, incorrect con�gurations can a�ect the building result and

further container functionality. This root cause accounts for 25.19%

of all con�guration errors. For example, miscon�guration of the

Go modules in containerd can cause a crash when using the jq

command [13] during container creation.

5.2.4 Runtime Shim Config Error (B.4). In containerized runtime

systems, there is a runtime shim that acts as an interface between

container managers (e.g., containerd) and runtimes (e.g., runc).

Incorrect con�guration of the shim can lead to discrepancy issues

between CRI and OCI runtimes. This type of con�guration error

is responsible for 10.37% of all con�guration errors. An example is

that the incorrect con�guration of the runhcs shim caused an error

in containerd for supporting the Windows hypervisor isolation.

6 In-Depth Analysis on CRS Bugs

Building on the taxonomy of bug symptoms and root causes in

CRSs, this section delves deeper into the common types of bugs

(Section 6.1), compares bug characteristics between CRS and other

software (Section 6.2), and explores the relationship between symp-

toms and root causes (Section 6.3).

6.1 CRS-Speci�c Bug Characteristics

We conduct a detailed analysis of bug characteristics within the

speci�c context of CRSs, focusing on four main types: performance

bugs, functional bugs, con�guration bugs, and security issues.

Performance Bugs are characterized by the program operating

correctly but exhibiting sub-optimal performance. Our �ndings

indicate that a majority of performance bugs (88.24%) in CRS are

due to coding errors, while the remaining are mainly caused by the

improper con�guration and dependencies on software in other lay-

ers. This leads to issues such as high disk resource occupancy, slow

execution, and excessive memory usage, which are closely related

to the unique features of CRS, such as the parallel use of multiple

containers and complex resource management. The performance

(a) OCI Symptoms

(b) CRI Symptoms

(c) OCI Root Causes

(d) CRI Root Causes

Figure 4: CRS Bug Taxonomy Distribution

issues can also cause serious consequences, high computational re-

source demands are often exploited to create Denial of Service (DoS)

threats. For example, Microsoft Azure cloud platform experienced

intermittent outages of more than 11 hours, disrupting an untold

number of customer websites along with Microsoft O�ce 365, Xbox

Live and other services across many countries [67]. More critically,

memory-related performance issues can lead to security concerns,

including privilege escalation and container escape scenarios.

Given the diverse root causes and the various consequences,

there is an urgent need to design e�ective methods for detecting

CRS performance errors, considering both performance and secu-

rity impacts in cloud systems.

Functional Bugs identi�ed in CRSs include three main types: Log-

ging Errors, Incorrect Execution Output, and Authorization Error.

Logging bugs and authorization bugs are particularly relevant to

CRS features, as logging and authorization are core functionalities

of cloud systems. Incorrect execution output, while a general issue,

manifests uniquely in the context of CRS, such as incorrect con-

tainer behaviors, improper execution of container isolation-related

components, and �awed container inheritance.

Given the widespread use of CRS in cloud environments, it is

noteworthy that functional bugs in CRS have a higher relevance

to security issues. These bugs can be easily exploited by attackers,

leading to concerns such as privacy issues, unauthorized privilege

escalation, and isolation bypass. The primary challenge in testing

the functionality of CRS is its complexity, which involves various

functions and interactions with multiple software layers.

Con�guration Bugs are a distinct category of CRS bugs due to

the intricacies of cloud con�guration. As shown in Fig. 4, there is a

signi�cant portion of bugs (31.47%) that are caused by con�guration

errors. This prevalence is attributed to the CRS architecture, which

heavily depends on con�gurations to manage the operation of di-

verse components, including system and third-party components.

CRI plugins require speci�c con�gurations for operation, the OCI

runtime relies on config.json to initiate containers, and di�er-

ent images need con�gurations to specify dependencies. Incorrect

con�gurations in CRSs can also lead to severe security issues.

The key challenges in detecting CRS con�guration bugs lie in

the myriad con�gurations across di�erent components and their

inter-dependencies. For example, CRS con�gurations span both
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management-level settings (e.g., plugin con�gurations) and system-

level settings (e.g., system mounts). While some con�gurations

adhere to explicit speci�cations (e.g., the OCI runtime speci�ca-

tion [47]), many others are customized (e.g., relying on add-on plug-

ins). Therefore, developing methods to better extract speci�cations

and model their impact and dependencies should be considered.

Security Issues in CRSs primarily encompass DoS attacks, priv-

ilege escalation or escape, memory leaks, and excessive resource

consumption, as highlighted in Fig. 2 and 3. As discussed earlier,

CRS bugs (such as performance, functional, or con�guration bugs)

are more likely to lead to security issues due to the multiple attack

surfaces inherent in cloud architecture. For instance, our analysis

reveals that certain bug types (Root Cause A.4.1, B.1.2, and B.2.2)

are classi�ed as vulnerabilities with relatively higher threat levels

(CVSS > 7.0), designated as High Severity.

Finding 7: Complex con�gurations during development and

usage phases of CRSs make con�guration errors a signi�cant

cause of bugs (31.47%). These errors often involve mount op-

tions, permission con�gurations, plugin con�gurations, sys-

tem call con�gurations, and shim con�gurations.

6.2 Comparison with Other Software

We compare the bug types of CRSs with other software, including

the common software, the relevant distributed software and the

similar CRS software.

Common Software. Compared to common software, such as au-

tonomous driving systems, deep learning libraries, protocols and

compilers, CRS exhibits speci�c bug symptoms and root causes

attributable to its distributed nature and containerization features.

Speci�cally, we can identify characterized CRS bug categories, in-

cluding the symptoms of B.1.2, B.1.3, C.2.2, C.2.3, C.3.1, C.3.2 and

root causes of A.3.2, A.4.2, B.1.1, B.1.2, B.2.1, B.2.2, B.4. bugs.

Relevant Software. Except for general software, CRSs share simi-

larities in application scenarios and architecture with Distributed

Systems (DS) and Operating Systems (OS). We observe that they

share many commonalities in bug types [4, 33, 40, 51, 53, 66], such

as performance bugs, con�guration bugs and functional bugs due to

their distributed nature. However, it is important to note that while

these bug types may appear similar at a high level, their context

speci�cations di�er signi�cantly. As the middle layer to handle con-

tainers, CRSs introduce unique bugs related to container isolation

and orchestration. While these bugs can be broadly classi�ed as

functional bugs, their speci�c nature and implications are distinct

to the CRSs. For instance, Runtime Shim Con�g Error arises from

the distinct lifecycle and architectural design of CRSs.

In contrast, Operating Systems, serving as the interface between

hardware and software, encounter bugs related to hardware re-

source management, interaction, and system security. Distributed

Systems, on the other hand, face challenges with maintaining con-

sistency, availability, and partition tolerance. As a result, traditional

static analysis or testing methods used in OS and DS may not be

e�ective in detecting CRS-speci�c bugs, highlighting the need for

the bug understanding and tailored approaches in this domain.

Other CRSs. Additionally, we compare the distribution of symp-

toms and root causes between two sets of software within the

same layer: containerd and cri-o for the CRI layer, and runc and

gvisor for the OCI layer. We calculate the average distribution

di�erences for each pair of software regarding symptoms and root

causes. As illustrated in Fig. 4, the average di�erence in symptom

distribution is 12.58% for the OCI layer and 12.91% for the CRI layer.

In terms of root causes, the average di�erence is 13.35% for the OCI

layer and 13.80% for the CRI layer.

While these results indicate consistent similarities, we also ob-

serve notable di�erences in the distribution of symptoms and root

causes between the two software implementations within each

layer. For example, we observe that runc does not exhibit High

Disk Resource Occupancy (D.1). This absence can be attributed to

runc’s direct interaction with the host kernel when handling disk

call functions, theoretically reducing the likelihood of encountering

bugs related to unreasonable disk resource usage. Similarly, there

is a signi�cant di�erence between gvisor and runc regarding the

root cause 3rd Party Component Con�guration Error (B.2). This

discrepancy is due to their varying dependencies on third-party

libraries. Speci�cally, runc typically utilizes the host kernel’s func-

tionalities directly, resulting in fewer dependencies on external

libraries. These di�erences suggest that, even for software within

the same layer, there can be distinct characteristics and bug distri-

butions due to di�erent implementations.

6.3 Symptoms and Root Causes

During the analysis, we also observe clear relationships between

symptoms and root causes. Speci�cally, we found that the majority

(84.85%) of Building Failures (A) are caused by Con�guration Er-

rors (B.3), highlighting the signi�cant impact of con�gurations on

successful building processes. For common bugs like Crash (B.1),

Logging Error (C.1), and Incorrect Execution Output (C.2), we found

that they can be attributed to various root causes, including Coding

Errors (A.1, A.2, A.3, and A.4) and Con�guration Errors (B.1, B.2,

B.3, and B.4). Incorrect Function Implementation (A.4) accounts

for the main reasons for crashes and incorrect execution output,

constituting 30.0% and 33.89%, respectively.

Authorization Error (C.3) is primarily caused by Incorrect Func-

tion Implementation (A.4), Improper Authorization Con�guration

(B.1), and 3rd Party Component Con�guration Error (B.2), with

respective percentages of 30.04%, 38.30%, and 12.77%. Excessive

Execution Time (D.2) is mainly attributed to Coding Errors (A),

accounting for 95.24%. Memory Error (D.3) is primarily caused by

Insecure Runtime Implementation (A.3), Incorrect Function Imple-

mentation (A.4), and 3rd Party Component Con�guration Error

(B.2), with respective percentages of 53.84%, 23.08%, and 15.38%.

This indicates that runtime implementation is likely to contribute to

memory errors. Our further analysis reveals that Unsafe API Usage

(A.3.1) and Inappropriate Lifecycle Organization (A.3.2) account for

64.29% and 35.71% of memory errors, respectively.

7 RQ3: Study of CRS Tests

In general, the testing process involves running the target program

with given test cases and using test oracles to determine if any bugs

occur. Therefore, our study focuses on three main questions: ❶

whether the target functions with bugs can be tested, ❷ whether

the test cases can trigger the buggy code when the functions are
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Figure 5: Proportion of Bugs Lacking Test Drivers inDi�erent

Root Causes

executed, and ❸ whether the test oracles can identify the bugs

when the buggy code is covered by the test cases.

Lack of Test Drivers. To evaluate whether the existing test drivers

can execute the functions with bugs, we collect all functions in-

volved in buggy-related commits (called buggy functions) as well as

the functions that have been executed by the collected tests (called

executed functions). Then we compare the buggy functions and

executed functions, and check whether the buggy functions can be

covered. We �nd that 41.96% of the bugs are not detected since the

corresponding buggy functions are not covered.

To detect the presence of a bug, one necessary condition is that

the code related to the root cause should be executed. Therefore,

we further study the relationship between the leaf categories of

root causes and the target function coverage to check the buggy

functions for which type of root causes are not covered.

From Fig. 5, we �nd that buggy functions with Runtime Shim

Con�g Error errors are less likely to be covered (64.29%), indicating

the lack of consideration of testing these container shim related

modules. In addition, most uncovered buggy functions are related

to con�guration errors, such as Runtime Shim Con�g Error, Plugin

Con�g Error, Incorrect Image and Con�g Parsing, and Incorrect System

Con�g, where more than 40% are not covered.

Lack of Test Cases.We further analyze the bugs which lack proper

test cases. For these bugs, the tests will execute the buggy function

with proper oracle, while lacking proper test inputs for triggering

the bug. We �nd that 27.97% of the bugs failed to be detected by

existing tests due to the lack of proper inputs. Particularly, we

discover that unit tests of CRSs often have simple inputs that may

not be enough to trigger the buggy code, indicating the need for

automated testing algorithms to generate e�ective test cases.

Lack of Oracles. Our analysis reveals that 9.32% of the bugs are

undetected due to the lack of appropriate oracles even though they

are executed during tests. This indicates that existing tests could

reach the faulty code, but lack the oracles to identify the bugs. Since

oracles are directly related to symptoms, we study the relationship

between the leaf categories of symptoms and undetected bugs that

are caused by the lack of oracles. This can help understand which

symptoms are (or not) considered by the existing tests.

In Fig. 6, we �nd that 37.50% of high disk occupancy bugs and

35.29% of the excessive execution time bugs lack proper oracles. This

suggests a de�ciency in storage performance and timeout checks

within testing designs, likely due to the challenge of determining

the ground truth regarding storage usage and time constraints. It is

surprising that the percentage of other bugs lacking oracles is low,

Figure 6: Proportion of Bugs without Oracles in Di�erent

Symptoms

particularly for logic-related bugs. Our in-depth analysis reveals

two main reasons: ❶ many buggy functions are not covered by

existing tests and are therefore not included in the statistics; ❷

most of the tests are designed by developers, and the oracles (e.g.,

for logic errors) have been manually assigned.

Finding 8: Common testing methods, such as unit tests, in-

tegration tests, and fuzz tests, are insu�cient for detecting

the collected bugs, with only a small portion (21.21%) being

detectable by existing tests. The reasons for the missing bug

detection include the lack of test drivers (41.96%), test oracles

(9.32%), and test inputs (27.97%).

Example. The code above illustrates CVE-2023-27561 [20], which

is a signi�cant regression vulnerability introduced during an at-

tempt to �x CVE-2021-30465 [18] in runc. This �x inadvertently

nulli�ed a previous patch for CVE-2019-19921 [16]. Speci�cally,

runc before version 1.0.0 had container escape bug by allowing

mounting directories through symbolic links under procfs race

conditions. This was patchedwith a check for themount of sensitive

locations such as the root directory (lines 12-15). The subsequent

patch for CVE-2021-30465 [18] employs the securejoin library

to verify mount targets to mitigate symlink-based race vulnera-

bilities (lines 5-7). However, this patch inadvertently reintroduced

CVE-2019-19921 [16] because the mount point dest would be set

before the checking of sensitive locations. While these bugs can

be categorized as functional or security bugs, they highlight the

relevance to the unique features of CRS, particularly regarding the

isolation properties of containerized environments and the potential

for race conditions in high-load, multi-tenant cloud environments.

1 func mountToRootfs(m *configs.Mount , c *mountConfig)

error {

2 rootfs := c.root

3 dest := m.Destination

4 if !strings.HasPrefix(dest , rootfs) {

5 dest = filepath.Join(rootfs , dest)

6 dest , err := securejoin.SecureJoin(rootfs , m.

Destination) // Patch for CVE -2021 -30465

7 if err != nil {

8 return err

9 }

10 switch m.Device {

11 case "proc", "sysfs": // Patch for CVE -2019 -19921

12 ...

Regarding bug detection, we �nd that this regression issue (CVE-

2023-27561) was not discovered until 2023. Despite the existence of
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many testing methods for runc, such as unit testing and fuzzing

suites, they are ine�ective in detecting such bugs due to: ❶ the

complexity of designing a test driver. In this bug, it requires the

simulation of high concurrency tasks and speci�c race conditions

(e.g., via a mount/unmount script), and ❷ the lack of oracles to

accurately capture the bugs, as they do not cause crashes or other

explicit symptoms. This example demonstrates the challenges of

detecting CRS-speci�c bugs and the need for the development of

new methods in the context of cloud environments.

Discussions on Bug-Speci�c Detection Methods. Although we

�nd that the existing built-in test suites face challenges in detecting

bugs in CRSs, there can be other testingmethods devised for speci�c

bug types that might aid in CRS bug detection. We discuss the

relevant tailored approaches as follows:

• Performance Bug Detection. Torpedo [38], based on framework

syzkaller [26], employs resource usage-based oracles for detect-

ing out-of-band workload issues associated with high disk or

CPU occupancy. MANTA [64] targets the detection and valida-

tion of missing-account bugs within systems, which could be

adapted to detect memory exhaustion issues in CRSs.

• Functional and Security Issue Detection. Xiao et.al [59] designed

layer-speci�c strategies to exploit operation forwarding attacks

in sandbox containers. Yang et.al [61] proposed attacking paths-

speci�c methods for detecting excessive permissions from third

parties in cloud orchestration software. However, these approaches

are limited in scope and may not generalize for other CRS bugs.

• Con�guration Bug Detection. Some research works have explored

techniques in detecting con�guration bugs. For instance, PCheck

[60] generates con�guration checking code to detect latent con-

�guration errors. Ctest [55] integrates software testing with pro-

duction con�gurations and code to identify failure-inducing con-

�guration changes. However, these methods may face challenges

when testing CRSs due to the complex and multi-resource-based

con�gurations (including containers, runtimes, and plugins).

8 Discussion

8.1 Implications and Lessons Learned

In this section, we summarize the implications of this work. Our

analysis aims to provide guidance tailored to the di�erent features of

CRS bugs discussed in Section 6.1, for stakeholders of the container

cloud ecosystem, including users, developers, and researchers.

For Users.We provide the following suggestions:

• Monitoring performance and functionality. Users should periodi-

cally check whether the performance and functionality of CRS

are as expected (see Section 4.3) to prevent more severe conse-

quences like security-related abuse of privileges. For examples,

users should meticulously monitor for performance issues, in-

cluding excessive disk or memory usage, which can stem from

hardware, operating systems, con�gurations, or general imple-

mentation (see D.1, D.3 in Fig. 2). Our study indicates that such

monitoring should be performed especially carefully on certain

platforms such as s390x or Windows.

• Careful con�guration and con�rmation. In CRSs, numerous con-

�gurations require input from users, and improper con�guration

can easily lead to functional or security issues. For example, spec-

ifying improper system capabilities when launching containers

can be used by attackers for privilege escalation, even leading to

container escape. To mitigate such risks, users should adhere to

CRS con�guration speci�cations and conduct thorough checks

before deployment, particularly in security-critical scenarios and

on platforms that may lack comprehensive support. Minimizing

con�gurations related to authorization to reduce potential abuse

should also be seriously considered by users. Additionally, many

comments in the manual or README may become outdated,

which users should carefully con�rm.

For Developers. We o�er the following suggestions for developers:

• Con�rming functional correctness.CRSs involve numerous plugins

and API calls (e.g., system calls). In addition to common coding

best practices, developers must ensure correct con�gurations,

API compatibility, and proper API usage (see A.2, B.2 in Fig. 3).

Particular attention should be given to con�gurations with de-

fault parameters to check for incorrect speci�cation constraints

or improper authorization allocation.

• Focusing on cloud security. Developers should focus more on

improving CRS security. Our study indicates that developers

should rigorously assess unsafe API usage, container lifecycle

management consistency, correct permission assignments, and

authorization con�guration bugs in CRSs (refer to A.3.1, A.3.2,

B.1.1, B.1.2, B.4 in Fig. 3). Developers might also consider tracking

platform variances, abnormal inputs for CRSs, and verifying the

consistency of CRS functionalities across di�erent versions.

• Adding high-quality tests and oracles. Our study shows that the

existing built-in test suites are limited. It is suggested for existing

projects to incorporate more tests and benchmarks, particularly

focusing on the di�erent categories of bugs summarized in Fig.2

and Fig.3. Furthermore, CRSs should extend their support to the

greatest extent possible, copping with rigorous compatibility

tests, including correct and consistent container behaviors result-

ing from di�erent commands and con�gurations (see C.2.2, C.2.3

in Fig. 2). Developers should enhance unit tests by augmenting

the number of test harnesses and corresponding oracles.

For Researchers. Based on our analysis of the unique features of

CRSs, we have identi�ed potential future research directions:

• Automated Test Driver and Test Oracle Generation. Existing built-

in tests are ine�cient and insu�cient to address the complexity

and unique features of CRSs. Our �ndings highlight the need for

methods capable of generating diverse test drivers, e�ective test

cases, and various types of oracles. Test driver generation tech-

niques should cover di�erent aspects, particularly con�gurations

(e.g., plugin con�guration and mounting con�guration), image

parsing, and incorrect code logic. The symptoms and root causes

summarized in this paper (see Figures 2, 3, 5, and 6) can bene�t

researchers in designing test oracles and test drivers. A potential

direction is the LLM-based methods due to the capability of LLMs

in understanding code semantics and business logic, which can

help generate corresponding drivers [68] and oracles.

• Designing Bug-Speci�c Methods. Our study shows that designing

a general end-to-end testing approach (e.g., integration testing

and fuzzing) for detecting all kinds of bugs in CRSs is challeng-

ing. We suggest researchers divide the tasks and design detection

methods speci�c to speci�c types of bugs. For example, for per-

formance bugs, researchers can focus on collecting appropriate
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resource information (e.g., CPU and memory) and designing met-

rics for systematic monitoring. For con�guration bugs, building

a causal model between con�gurations and their impact on CRSs

could be more e�ective than simple rule-based matching.

• Detecting Regression Bugs.Our analysis �nd that frequent updates

in CRSs can introduce regression bugs, which can cause secu-

rity issues. For example, CVE-2023-27561 [20] (see Section 7) is

caused by the break of the previously vulnerability patch during

software updates. The key challenge is evaluating the impact

of code changes, especially for those related to security patches.

Researchers can develop e�ective regression tests by considering

di�erent �le or method granulates. Patch fuzzing is a potential

direction that leverages previous PoCs (e.g., from CVEs) as initial

seeds to test patches e�ectively.

• LLM-based Scanning, Diagnosing and Bug Detection. We found

that Large Language Models have been applied to the cloud main-

tenance. For example, k8sgpt [29] is developed to assist scanning,

diagnosing, and triaging issues for Kubernetes con�gurations.

We foresee leveraging LLMs to detect bugs and analyze vulner-

abilities in CRSs as a promising direction. LLM agents can be

developed to test CRSs, debug failed tests, triage failures, and

even repair identi�ed bugs. Therefore, how to build CRS-speci�c

intelligent LLM (e.g., CRS GPT) is an interesting direction.

• Log-basedMonitoring.Considering the complexity of CRSs, testing-

based methods may not detect all bugs due to the lack of test

drivers, oracles and tests. As a complement, online error detec-

tion (e.g., log analysis and anomaly detection) could be used

to detect some errors. For example, based on the log informa-

tion, we can detect incorrect runtime behaviors (see A.3.1, A.3.2

in Fig. 3) and some con�guration errors (see B in Fig. 3). The

main challenges include the large volume of CRS logs and spe-

ci�c log representations. Designing e�ective log collection and

embedding construction methods for attack detection could be

important directions for future research.

8.2 Threats to Validity

Our dataset selection (including the projects, the bugs and tests)

is a potential threat. We mainly selected runc, gvisor, contain-

er and cri-o since they are the most commonly used CRSs in

industry. The selection of tests could pose another validity threat.

There might exist test cases that are used internally by development

teams or generated by bug-speci�c tools. Since these tests are either

not publicly available or challenging to adapt, we have focused on

various tests from the o�cial codebases of CRS projects.

Time interval is a threat to the bug distribution. We limit our

commit dataset to last two years for covering the latest bugs. We

will keep updating the results by adding more analysis of new

bugs in the future. Another potential threat to our study is the

subjectivity involved in manual analysis. To address this, we take

measures such as discussing and cross-checking the labeling results

among the authors involved in the study. Additionally, we follow

a systematic and rigorous process for bug classi�cation, and any

discrepancies are resolved through discussion and consensus. To

validate the representatives of our �ndings, we sample commits

from the entire dataset and compare the taxonomy results with our

researched commit data.

9 Related Work

Although there are some works studying errors in operating sys-

tems [4, 50, 58], distributed systems [24, 66], and DevOps sys-

tems [27, 41], these studies primarily focus on domain speci�c

characteristics of the study target instead of container cloud sys-

tems. Moreover, these studies miss many container-characterized

bug categories e.g., Escalized Privilege etc.

Container Cloud Security. Given the high security impact of con-

tainer cloud systems, much research has been devoted to studying

their security challenges. For example, Yang et al.[63] discussed

the current security challenges in container cloud systems, and

suggested multiple solutions for future development. Nordell [42]

proposed a systematic evaluation of CVEs and mitigation strategies

for the Kubernetes stack. Abbas et al.[1] designed PACED, a real-

time uses privileged monitor system to detects container escape

attacks. Li et al.[34] examined path misresolution vulnerabilities in

container systems and proposed kernel-based �lesystem isolation

method to enhance container access control. Yang et al.[62] pro-

posed a novel abstract resource attack technique that can exhaust

host memory without breaking the container limit. McDonough et

al. [38] developed Torpedo to fuzz container cloud services using

the popular Linux kernel fuzzing framework syzkaller[26]. Tor-

pedo is speci�cally designed to detect out-of-band workloads in

multi-tenant container cloud services. While these studies focus on

speci�c domains of container cloud security, none of them provides

a comprehensive understanding of various bugs in CRSs.

Container Runtime Performance. The performance of CRSs has

also garnered much attention. Speci�cally, Avino et al.[2] tested

the performance of Docker under heavy computing workloads.

Mavridis et al.[37] evaluated the performance of Docker on vir-

tual machines such as KVM and HyperV. Espe et al.[23] conducted

a performance evaluation of CRSs using the self-developed tool

TouchStone to test the CPU and memory performance. Wang et

al.[57] researched the performance and isolation functionality of

the runc, gVisor, and Kata CRSs. Their assessment of performance

was based on several metrics, including the number of supported

system calls, startup time, and isolation functionality.

10 Conclusion

In this work, we conduct the �rst comprehensive study on bugs

of Container Runtime Systems by manually inspecting 429 related

bugs. We develop taxonomies for the symptoms and root causes of

these bugs, analyze their distributions, and evaluate the e�ective-

ness of existing test codes. The study reveals that CRSs have char-

acteristic bugs and only around 20% bugs are detectable through

built-in tests. These �ndings o�er practical insights on improv-

ing the quality of CRSs. Based on our research, we also provide

recommendations for the use, development, and testing of CRSs.
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